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ABSTRACT 

means of successive fixed linear equations can 
be obtained ones. The Jacobi method system in the sequence 

method applied to the original 

radii of the successive 
iteration matrices Jacobi operators); under the assumption 

proper cone and has 

spectral radius less (or greater) result is if the Jacobi operator 
obtained after k substitutions either is the same 
or has a strictly result implies that the 
sequence radii is monotone. 

space of linear mappings on X. For b in 
X, and L and U in consider fixed linear equation 

x = (L + U)(x)+ (1.1) 

For k in N, we define : = LB, + U, with B, : = L + U. 

Notice that if the spectral radius of L, r(L), satisfies r(L) < 1, then hm B, = 

(I - L)- ‘U (I is the identity operator), which is the Gauss-Seidel operator 
associated to the splitting (L, U) of $. It is easy to see that, if x satisfies (l.l), 
then we also have 

x = B&)+ L,(b). (1.2) 

The following simple lemma gives more insight into the relationship between 
(1.1) and (1.2) (see 2.3 in [3]). 

LINEAR ALGEBRA AND ITS APPLICATlONS 51:127-136 (1983) 127 

6 Elsevier Science Publishing Co., Inc., 1983 
52 Vanderbilt Ave., New York, NY 10017 00243795/83/$3.00 



128 J. P. MILASZEWICZ 

LEMMA 1.1. Suppose that I - $, Z - B,, and L, are invertible, and 

consider c in X. Then the following are equivalent: 

(i) x = B,(x)+ b and x = Bk(x)+ c; 

(ii) x satisfies one of the equations in (i) and L,(b) = c. 

Consider now a proper cone K in X (see [l] for the definition); for x, y in 
X, we write x < y if and only if y - x E K; analogously, if L, U E B(X), we 

write L < U if and only if L(x) < U(x) for all x in K. Let us recall the main 
result of the Perron-Frobenius theory, namely, if T E B(X), T > 0, then there 
exists x > 0 (i.e. x >, 0, ;r * 0) such that T(r) = r(T)x (see [4]). Recall that a 
proper cone in U%! n is always normal (see 4.1 in [2]) and that if A, B are in 
B(X), B > 0, and - B < A < B, then r(A) < r(B) (see 1.8 in [2]). 

For T in B(X), T > 0, we say that it is K-irreducible if no faces of K are 
invariant under T; equivalently, if x > 0 is such that T(x) < ax for some 
a E R, then x belongs to the interior of K (denoted x > 0). If T is not 
K-irreducible, it is said to be K-reducible. We shall need the following 
extension of Theorem 9 in [4] (see also 1.3.29 in [l]). 

LEMMA 1.2. Let 0 < A < B, where B is K-irreducible and A f B. Then 

r(A) < r(B). 

Proof. We have A < A +2-‘(B - A)= 2-‘(A + B), which yields r(A) 

< 2-%(A + B). Since 2-‘(A + B) is K-irreducible and 2-‘(A + B) Q B with 
equality excluded, Theorem 9 in [4] yields r(2-l(A + B)) < r(B) and the 
conclusion follows. n 

In the sequel L and U in B(X) are such that L > 0, U >, 0; for B, as above 
we denote r,: = r( Bk). 

The following basic result will be used implicitly in this paper (See 
Theorem 2 in [5] and 53 in [3]): One and only one of the following holds, for 
all k in N: (i) O=r,=r,; (ii) O<r,k+’ < rk < r0 < 1; (iii) 1 = r0 = r,; (iv) 
1 < r0 < Tk < To ‘+l. Note also that, if r(L) < 1, then limr, = r((Z - L)-‘U). F. 
Robert asked in [6] whether the sequence (rk) is monotone, and the affirma- 
tive answer has been given in [3]. A further question concerns the strict 
monotonicity of (TV); we analyze it in the present paper and prove in Section 
3 that, if r0 < 1 ( r0 > 1) and B, is K-irreducible, then either r,, 1 < rk (r,, 1 > rk) 
or Lktl = 0; these results imply the monotonicity of (rk), which is formally 
stated in Corollaries 3.2 and 3.4. Note that Lk+’ = 0 implies that Bk+l= Bk; 
thus, the results already mentioned can be restated in the following way: If B, 

is K-irreducible and r0 f 1, then rk+ 1 = rk if and only if Bk+ 1 = Bk. Some 
preliminary useful properties of the B,‘s are proven in Section 2. 
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2. SOME PROPERTIES OF THE MODIFIED JACOBI OPERATORS 

Recall that if $ is K-irreducible, then 0 < r0 (see Theorem 6 in [4]). 

LEMMA 2.1. Suppose B. is K-irreducible, U * 0, and r. < 1. Then the 
following hold: 

(i) r(Lk+‘) < r,. 
(ii) Zf x > 0 is such that Bk(x) = r,p, then 

Lkl(~)=(Z--TklLk+‘)~‘?klU(r) and x>O. 

Proof. (i): Since U * 0, Lemma 1.2 implies that r(L) < r( Bo). Thus, 

(ii): Note that B, = Lk+’ + L&J; thus, rkx = Lk+‘(x)+ L,Jl(x), which 
yields 

(I - r;lLk+l)(x) = r$pLJJ(x). (2.1) 

It follows from (i) that I - rk L k+l is invertible; this fact and the invertibility 
of L,, when applied to (2.1), imply that 

Lkl(X) = (I - r;lLk+l) -lrpu(x). 

As for the second part, notice that Lemma 1.1 implies 

I?,(x)+ L,‘((l- r&x) =x. 

Thus B,(x) < x, which yields x > 0. n 

REMARK 2.2. It is clear from Lemma 2.1 that r( Lkt ‘) < rk is equivalent 
to U * 0. It is also well known (see 3.8 in [7]) that r(Lk+‘) < r, is equivalent 
to Z - T; ‘Lk+ ’ being invertible and (I - rk ‘Lk+ ‘)- ’ > 0. However, one 
might wonder whether the hypothesis U * 0 can be dropped in the second 
part of 2.l(ii). The following simple example shows that it cannot: Consider 
X: =Iw2, K: ={(x,~):r>O, y>O}, and 
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If U = 0, then 

1 
and Br(;) =0.25( ;). 

LEMMA 2.3. 

(i) If B, is K-irreducible, then $ is K-irreducible. 

(ii) If moreover r(L) = 0, then Bj is K-irreducible for 0 Q j< k. 

Proof. (i): If we suppose that $ is K-reducible, there exist t E R, t > 0, 
and x in the boundary of K, x * 0, such that B,(x) = tx. Then t < 1 implies 
that Bj(x) < x for 0 < j< k, and this is a contradiction, whence t > 1. But if 
t > 1, we obtain inductively that 

Bj+l(x) = LB,.(x)+U(x) < tit%, 

which also contradicts the K-irreducibility of B, when j+ 1 = k. 
(ii): If we now suppose that for some j, 1~ j,< k, Bj is K-reducible, then 

consider a real nonnegative t, and x in the boundary of K, x * 0, such that 
Bj(x) = tx. Suppose first that t = 0; in this case we have Bk(x) = 0, and this 
contradicts the irreducibility of B,. Suppose now that 0 < t; recall that 
Lj+l(r)+ LjU(x)= tx. Thus, t-‘LjU(x)=(I - t-lLj+l)(q. Since r(L)= 0, 
we have that Z - t-‘Lj+’ is invertible, and as in Lemma 2.1, 

LYl(x) = (I - t-lLj+l)-lt-lu(x) a 0. (2.2) 

On the other hand, Lemma 1.1 implies that 

B,(x)+ L;‘((l- t)r) =x. (2.3) 

If t < 1, (2.2) and (2.3) yield $(x) < x, and because of (i), it follows that 
x >> 0. This contradiction implies that t > 1. Note that 

Ljl=(z-L)(I-U+l)-l 

=[I-~i+l_~(z-~j)](z-Lj+l)~’ 

= I - L(I- Li)(I - .rj+l)-’ 

= I- LLj+L;l, with L,:=Z. 
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Thus, in (2.3) we get 
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B,(x)+(t - l)LLj_lLjyx) = tx, 

whence &(T) G tx. This produces yet another contradiction with (i), and the 
proof is thus complete. W 

REMARK 2.4. The following example shows that the hypothesis r(L) = 0 
in Lemma 2.3(ii) cannot be weakened to U * 0. Consider X and K as in 
Remark 2.2, and 

Bo:=[; j, L:=[‘t’ ;] with Oct. 

Then, B, is K-irreducible or not depending on whether k is even or odd. 

3. THE STRICT MONOTONICITY QUESTION 

THEOREM 3.1. Suppose rO < 1. lf B, is K-irreducible, then either r,, 1 -C r, 

orLk+‘=o. 

Proof. Since B, is irreducible, so is $, and rn > 0. If U = 0, then 

rk+l = % ki2 < r$+l = rk for all k in N. Suppose then that U * 0 and that 
rk+l = rk. Consider y > 0 such that Bkll(y) = r,y. Equivalently 

By applying Lemma 1.1, we get 

Since 

LkL& = (I - Lk+‘)(z - Lk+2) ~ l 

= [(I - Lk+2) - Lk+‘(z _ L)](z _ Lk+2) -l 

= I _ Lk+lL-1 
k-cl> 
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we obtain 
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B,(Y) - Lk+%A((l - Q)Y) = r,y. 

On the other hand, by applying Lemmas 2.3 and 2.1, we get 

Thus, B,(y)> rky and B,(y)* rky unless Lk”U(y)= 0. But B,(y)* rky 
would imply r(Bk) > r, (see Theorem 10 in [3]). Hence we must have 

Lkf ‘U( y ) = 0. (3.2) 

Going back to (3.1), we get 

G(Y) = OTY). (3.3) 

As Y = Be(y)+ Lk;li((l - rk)y), we have 

Y=B,(Y)+r,-l(l-r,)U(Y). (3.4) 

By applying Lk+’ to both members in (3.4), and taking account of (3.2) we 
obtain 

Hence, (I - L) Lk+ '( y ) = 0, which implies 

Lkf ‘( y ) = 0. (3.5) 

Since from Lemma 2.1 we have y > 0, (3.5) implies that Lk+‘(x) = 0 for all r 
in K, which finally yields Lktl = 0. n 

COROLLARY 3.2. Suppose r0 < 1. Zf U is K-irreducible, then for each k, 

either r,, 1 < rk or Lk+ ’ = 0; in the latter case rk+ 1 = rk. Zf U is K-reducible, 
then r, + 1 Q rk for all k (see [3]). 

Proof. The first statement follows from Theorem 3.1. As for the second, 
consider T in B(X), T >, 0, T K-irreducible (see 1.3 in [3]), and to E R, to > 0 
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such that r(L+U+t,T)<l; for O<t<t,, let us call U(t):=U+ 
tT, B,(t): = L + U(t), Bk+r(t): = LB,(t)+U(t), and rk(t): = r(Bk(t)). The 
first part of the present corollary implies that r,, r(t) < rk(t) unless Lk+ ’ = 0; 
letting t tend to 0 in this inequality, we finally obtain r,, r < r,. n 

THEOREM 3.3. Suppose that r0 > 1 and B, is K-irreducible. Then either 
~~<r~+~orL~+l=O. 

Proof. Evidently, we can suppose U * 0. For s and t in R, s > 0, t > 0, 

and T as in Corollary 3.2, we define BO(s, t) : = (L + sZ) + U + tT, 

B,,+l(s, t): = (L + sZ)B,(s, t)+ U+ tT, L,(s): = C;&,(L + sZ)j, 0 < m < k. 

We have thus that r(L + sZ)k+2 < rk+l(s, t): = r(Bk+l(s, t)), because 
Bk+l(~, t) is K-irreducible. 

Consider now sequences (si) and (t,) with si > 0, ti > 0, lim si = 0 = lim t,, 
and such that I-(L+s,Z), Z-(L+S~Z)~+‘, Z-B,(s,,ti), and Z- 
B,+,(s,, ti) are invertible (see the proof of Theorem 4.l(ii) in [3] for the 
existence of such sequences). Consider xi >> 0 with (]xi (1 = 1 for some fixed 
norm I] )I and such that 

By applying Lemma 1.1 we get 

Thus 

+ [I- rk+l(si> ti)l Lk(Si)[Lk+l(Si)l -‘(‘i) 

Since from Theorem 3.1 

Lk(Si)[Lk+l(Si)l -’ = I-- [L(si)]k+l[Lk+l(Sj)] -l, 

we get 
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As in the proof of Lemma 2.1, we can obtain 

By considering a convergent subsequence of (xi) we obtain x > 0, llxll = I, 
such that 

Thus r,, i x >, B,(x), with equality excluded if Lk+‘U(x) * 0. Since B, is 
K-irreducible, we must have x >> 0 and r, < r,, i if Lk+ ‘U(x) * 0. If 
Lkt’U(x)= 0, we get that L k+ ‘U = 0. Since from Lemma 2.3 we have that B, 
is K-irreducible, consider y =-> 0 such that $(y) = ray. Thus Lk”Bo(y) = 
Lkt2(y)= roLk+‘(y), i.e., 

(r$ - L)Lk+l(y) = 0. (3.6) 

Since B, is K-irreducible, r(L) < r,. Thus (3.6) gives Lk”(y) = 0, which 
implies the conclusion. W 

COROLLARY 3.4. Suppose r, > 1. If U is K-irreducible, then either r, < rk+ 1 
or Lk+’ = 0, for each k. Zf U is K-reducible, then rk < rk+l for all k (see [3]). 
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Proof. This follows the same lines as for Corollary 3.2 n 

Consider now X: = R4 and K: = ((x,, x2, xs, x4); xi > 0, 1~ i < 4). Let 

withO<t.ThenB,:= L + U is irreducible and 

Since B$ = t41, we have r, = t. By considering appropriate permutations it is 
easy to see that rr = t2, rz = t2, and r3 = t4. Thus we have 

r3 < r, = rl < r0 if t < 1 and r0 < r1 = rz < r3 if t>l. 

This example shows that in Theorems 3.1 and 3.3, we cannot shift the 
hypothesis of being K-irreducible from B, to B,, even when r(L) = 0. 

REMARK 3.5. Under the assumptions that r(L) = 0, B, is K-irreducible, 
Lk+ ’ * 0, and r, < 1 (rO > l), then Lemma 2.3(ii) and Theorem 3.1 (3.3) imply 

that rj+r < rj (rj+l > rj) for all 0 < j< k. 

This work was written while the author was holding a two-month visiting 

position at the Scuola Normale Superiore of Pisa with the support of the 

Italian Consiglio Nazionule delle Ricerche. 
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